a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đó: ΔAHD=ΔBKC
b: Xét tứ giác ABKH có
AH//BK
AH=BK
Do đó: ABKH là hình bình hành
Suy ra: AB=KH
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đó: ΔAHD=ΔBKC
b: Xét tứ giác ABKH có
AH//BK
AH=BK
Do đó: ABKH là hình bình hành
Suy ra: AB=KH
cho hình thang cân ABCD có AB//CD và AB<CD hai đường cao AH, BK chứng minh KC= (DC- AB):2
Cho hình thang cân ABCD (AB//CD) AB>CD. Kẻ 2 đường cao AH và BK. Chứng minh HD=KC
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD ( AB // CD ) . Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E . Chứng minh : a ) ∆ACB = ∆ EBC b ) ∆BDE là tam giác cân c ) Góc ACD = góc BDC
Bài 1: Cho hình thang cân ABCD ( AB//CD) có D^=700
a) Tính số đo các góc B^,C^,A^
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Bài 2: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh △BFC = △CEB
c) Chứng minh BFEC là hình thang cân
Bài 8: Hình thang cân ABCD có AB // CD, AB < CD. Kẻ đường cao AH, BK. Chứng minh DH = CK.
Hình thang cân ABCD có AB // CD, AB < CD. Kẻ các đường cao AH, BK. Chứng minh rằng DH = CK ?
Cho hình thang cân ABCD ( AB//CD) có D^=700
a) Tính số đo các góc B^,C^,A^
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Cho hình thang cân ABCD (AB//CD). AB là đáy nhỏ. O là giao điểm của hai đường chéo. Chứng minh a) Góc CAD = góc DBC b) OA=OB OC=OD c) Kẻ các đường cao AH và BK. Chứng minh DH=KC d) Cho AB=10cm, CD=20cm và đường cai AH=12cm. Tính độ dài cạnh bên
Cho hình thang cân ABCD (AB//CD), kẻ AH và BK cùng vuông góc với CD.Chứng minh:
a) HK= AB
b) AH =BK; DH=CK=(CD-AB):2