Cho hình thang ABCD ( BC // AD), hai đường chéo AC và BD cắt nhau tại O, góc BOC bằng 60 độ. Gọi M, N,P,Q lần lượt là trung điểm của BC , OA, OB, AB, CD. a)Chứng minh tứ giác DMNC nội tiếp
b) tam giác MNQ đều C
c) Gọi H là trực tâm tam giác MNQ. Chứng minh H, O , I thẳng hàng
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Câu 2: Cho phương trình x2 -(m-1)x+(m-2)=0(m là tham số).
a/ Tìm m để phương trình có hai nghiệm trái dấu.
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh :AD vuông góc BCvà AH.AD=AE.AC
b) Chứng minh : góc EOC = góc EFD
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho tam giác ABC, các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N, P lần lượt là điểm đối xứng của H qua BC, AC, AB. Chứng ming 6 điểm A, B, C, M, N, P cùng thuộc một đường tròn
Câu III ( 3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tiếp tuyến qua B,C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E,F
1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng
2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng: OJ//BC
3) Gọi K là trực tâm tam giác OEF. CMR: AT chia đôi đoạn thẳng OK