góc BHC=góc FHE=180 độ-góc BAC
=>góc BHC+góc BAC=180 độ
H đối xứng M qua BC
=>BH=BM; CH=CM
mà CB chung
=>ΔBHC=ΔBMC
=>góc BMC=góc BHC
=>góc BMC+góc BAC=180 độ
=>ABMC nội tiếp(1)
góc AHC=góc FHD=180 độ-góc ABC
=>góc AHC+góc ABC=180 độ
H đối xứngN qua AC
=>AN=AH; CN=CH
mà AC chung
nên ΔANC=ΔAHC
=>góc AHC=góc ANC
=>góc ANC+góc ABC=180 độ
=>ABCN nội tiếp(2)
góc AHB=góc DHE=180 độ-góc ACB
=>góc AHB+góc ACB=180 độ
H đối xứng P qua AB
=>AP=AH; BH=BP
=>ΔAHB=ΔAPB
=>góc APB+góc ACB=180 độ
=>APBC nội tiếp(3)
Từ (1), (2), (3) suy ra ĐPCM