Cho hình thang cân ABCD (AB//CD), hai đường chéo cắt nhau tại O và COD=60độ . Gọi M,N,P,Q lần lượt là trung điểm của AD, BC, BD, AC. Gọi các trung điểm của OB và OC là E và F
a, Chứng minh rằng 4 điểm M,N,P,Q thẳng hàng
b, Chứng minh tam giác OPQ và tam giác EFM là các tam giác đều
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, có hai đường cao BB' và CC' cắt nhau tại H a)Chứng minh tứ giác BCB'C' nội tiếp? b)Gọi H' là đối xứng của H qua BC. Chứng minh H thuộc đường tròn tâm O? c)Tia AO cắt đường tròn tâm O tại D và cắt B'C' tại I. Chứng minh AD vông góc với C'B'
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
cho tứ giác ABCD nội tiếp đường tròn O, hai đường chéo AC và BD cắt nhau tại I. Vẽ đường tròn ngoại tiếp tam giác ABI. Tiếp tuyến của đường tròn này tại I cắt AC và AD lần lượt tại M và N. Chứng minh rằng:
a) MN//Cd
b) ABNM nội tiếp
Cho tứ giác ABCD, hai đường chéo AC BD vuông góc tại O, qua O kẻ OE, OF, OG, OH lần lượt vuông góc với AB, BC, CD, DA. Chứng minh tứ giác EFGH là tứ giác nội tiếp