Cho hình thang ABCD có góc A = góc D = 90 độ . Hai đường chéo vuông góc với nhau tại O . Biết AB = 2 căng 13 cm , OA = 6cm . Tính S ABCD
Cho hình thang ABCD có AB // CD . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O , OD = 8 cm , OB = 2 cm .Tính diện tích ABCD
Cho hình thang ABCD có ∠B= ∠C=90 độ. Các đường chéo vuông góc với nhau tại Q.
a) C/m \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{QC^2}-\dfrac{1}{QB^2}\)
b) Các đường trung tuyến QE và BF của Δ BQC vuông góc với nhau tại G, biết BQ= \(\sqrt{6}\) cm. Tính BC.
* Cho hình thang ABCD vuông góc tại A và D. Hai đường chéo vuông góc với nhau tại O. Biết AB=\(2\sqrt{13}\), OA=6, tính diện tích hình thang ABCD
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho hình thang vuông ABCD (góc A = góc D = 90o ) có AC vuông góc với BD tại H .Biết HB=8cm, HD=18cm .Tính diện tích hình thang
Bài 3: Cho hình thang ABCD (đáy AB, CD) 𝐴̂ = 𝐷̂ = 900 có hai đường chéo vuông góc với nhau tại O, AB = 15cm, AD = 20cm.
a) Tính độ dài OB, OD
b) Tính độ dài AC
c) Tính diện tích hình thang ABCD
Cho hình thang ABCD (AB//CD), góc D = 90 độ, góc C bằng 30 độ
a) Chứng minh rằng diện tích hình thanh ABCD = 1/4*BC*(AB+CD)
b) Gọi M là giao điểm của BC và AD. Kẻ DK vuông góc với CM (K thuộc CM), KL vuông góc với DM (L thuộc DM). Chứng minh rằng 4*DL*DM=CD2
c) Biết BC = 8cm, diện tích hình thang ABCD = 48 cm2. Tính DM, MC (không làm tròn kết quả)
Mng giúp mik với, mai mik ktra rồi
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B