Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
cho hình bình hành ABCD có AC > BD . Vẽ CE vuông góc với AB tại E và CF vuông góc với AD tại F . Biết đường chéo AC = a , hãy tính AB.AE + AD.AF theo a .
cho hình thang ABCD(AB//CD).đường trung bình MN của hình thang (M\(\in\)AD,N\(\in\)BC) cắt đường chéo AC,BD thứ tự tại E,F
a.c/m ME=FN
b.cho AB=6cm,CD=8cm.tính EF
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
cho hình thang abcd có đáy ab và cd, biết ab=4cm,cd=8cm,bc=5cm,ad=3cm. CM: abcd là hình thang vuông
Cho hình thang ABCD có đáy AB và CD , biết AB = 4cm , CD = 8cm , BC = 5cm , AD = 3cm . Chứng minh : ABCD là hình thang vuông