Xét hình thang ABCD(AB//CD) có : NB=NC; MD=MA
\(\Rightarrow\) MN là đường trung bình hình thang ABCD
\(\Rightarrow\) MN//AB(1)
Ta có: \(\bigtriangleup\)BCA có NB=NC; PC=PA
\(\Rightarrow\) NP là đường trung bình của \(\bigtriangleup\)BCA
\(\Rightarrow\) NP//CD \(\Rightarrow\) NP//AB(vì AB//CD)(2)
Ta có: \(\bigtriangleup\)CDA có MD=MA; PC=PA
\(\Rightarrow\) MP là đường trung bình của \(\bigtriangleup\)CDA
\(\Rightarrow\) MP//CD \(\Rightarrow\) MP//AB(3)
Từ(1);(2);(3)\(\Rightarrow\) M,N,P thẳng hàng(*)
Ta có: \(\bigtriangleup\)CDB có QD=QB;NC=NB
\(\Rightarrow\) NQ là đường trung bình của \(\bigtriangleup\)CDB
\(\Rightarrow\) NQ//CD \(\Rightarrow\) NQ//AB(4)
Ta có: \(\bigtriangleup\)ADB có QD=QB;MD=MA
\(\Rightarrow\) MQ là đường trung bình của \(\bigtriangleup\)ADB
\(\Rightarrow\) MQ//CD \(\Rightarrow\) MQ//AB(4)
Từ(1)(3)(4) \(\Rightarrow\) N,Q,M thẳng hàng(**)
Từ(*);(**) \(\Rightarrow\) N,Q,P,M thẳng hàng
b. Ta có: NM là đường trung bình hình thang ABCD
\(\Rightarrow\) \(MN=\dfrac{x+y}{2}\)
Ta có NQ và MP là đưởng trung bình của \(\bigtriangleup\)CDB và \(\bigtriangleup\)CDA
\(\Rightarrow\) NQ=MP=\(\dfrac{y}{2}\)
Ta lại có: NQ+QP+PM=MN=\(\dfrac{x+y}{2}\)
Hay y + QP=\(\dfrac{x+y}{2}\)
\(\Leftrightarrow\) QP = \(\dfrac{x+y}{2}-y=\dfrac{x+y-2y}{2}=\dfrac{x-y}{2}\)
\(\Rightarrow\) MN+QP=\(\dfrac{x+y}{2}+\dfrac{x-y}{2}=\dfrac{x+y+x-y}{2}=\dfrac{2x}{2}=x\)
c) Ta có: MP=PQ=QN
\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x-y}{2}=\dfrac{y}{2}\)
\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x-y+y}{2+2}\) (Tính chất dãy tỉ số bằng nhau)
\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x}{4}\) \(\Leftrightarrow\) \(4y=2x\) \(\Leftrightarrow\) \(x=2y\)