Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=2OC. gọi M là trung điểm của BC, tính cosin góc của OM và AB
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a . Tính góc giữa 2 đường thẳng A'B và B'D'
Cho hình lăng trụ tam giác ABC.A'B'C' có độ dài cạnh bên bằng a. Trên các cạnh bên AA', BB', CC' ta lấy tương ứng các điểm M, N, P sao cho AM +BN + CP = a
Chứng minh rằng mặt phẳng (MNP) luôn luôn đi qua một điểm cố định ?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng a√3 . O là tâm hình vuông . Chứng minh (SAC) vuông góc (ABCD) ; (SAC) vuông góc (SBD)
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\).Gọi O là tâm hình vuông ABCD và M là trung điểm SC.
a) CM (MBD) vuông góc với (SAC)
b)Góc (SA,(ABCD))=?
c)Góc ((MBD),(ABCD))=?
d)Góc ((SAB),(ABCD))=?
mọi người giúp em câu b với c nhé, cảm ơn mọi người nhiều
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
cho tứ diện OABC có OA,OB,OC đôi một vuông góc với nhau tại O và OA=OB=OC=1. Gọi M là trung điểm AB. tính (vecto OM,vecto BC)
Cho hình lăng trị tứ giác ABC.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB',CC', DD' lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của lăng trụ. Hãy chỉ ra các vectơ :
a) Cùng phương với \(\overrightarrow{IA}\)
b) Cùng hướng với \(\overrightarrow{IA}\)
c) Ngược hướng với \(\overrightarrow{IA}\)