Do \(\widehat{BSA}=60^0\Rightarrow\Delta ABS\) đều
\(\Rightarrow SA=SB=SC=SD=AB=a\)
Gọi H là tâm đáy \(\Rightarrow SH\perp\left(ABCD\right)\)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(\Rightarrow SH=\sqrt{SA^2-AH^2}=\sqrt{SA^2-\left(\frac{AC}{2}\right)^2}=\frac{a\sqrt{2}}{2}\)
\(\Rightarrow V=\frac{1}{3}SH.AB^2=\frac{a^3\sqrt{2}}{6}\)