Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.
1. Tính thể tích khối tứ diện MNBD.
2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=a; hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là điểm H thuộc đoạn AC, \(AH=\frac{AC}{4}\). Gọi CM là đường cao của tam giác SAC.
Chứng minh M là trung điểm của SA và tính thể tích của khối tứ diệm SMBC theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA=a,SB=a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC
Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa 2 đường thẳng SM và DN
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(\widehat{BAD}=120^o\). Biết \(SA\perp BD,SB\perp AD\) và (SBD) tạo với mặt phẳng (ABCD) góc \(60^o\). Lấy H đối xứng với C qua A.
a) Tính \(V_{S.ABCD}\)
b) Gọi các điểm M, N lần lượt thuộc các cạnh SC, SD sao cho \(SM=\dfrac{a\sqrt{43}}{4};SN=\dfrac{a\sqrt{39}}{6}\). Tính \(V_{AMND}\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB, AD. H là giao điểm của N và DM. Biết SH vuông góc với mặt phẳng (ABCD) và \(SH=a\sqrt{3}\). Tính thể tích của khối chóp S.CDNM và khoảng cách giữa 2 đường thẳng DM và SC theo a
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Chứng minh rằng AM vuông góc với BP và tính thể tích của khối tứ diện CMNP
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a SA vuông góc với ABCD Gọi P là trung điểm cạnh SD, PC = a căn(3). Tính thể tích hình chóp
Cho hình chóp SABCD có đáy là hình vuông cạnh a, đường cao SA=2a. Gọi (P) là mặt phẳng qua A và vuông góc với SC. Tính diện tích của hình chóp cắt bởi mặt phẳng (P)