Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a, SA vuông góc với mặt phẳng (ABC), góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 30 độ. Gọi M là trung điểm của cạnh SC. Tính thể tích khối chóp S.ABM theo a.
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(\widehat{BAC}=120^o\), \(AB=AC=a\). Tam giác \(SAB\) vuông tại \(B\), tam giác \(SAC\) vuông tại \(C\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(ABC\right)\) bằng \(60^o\). Gọi \(H\) là hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left(ABC\right)\). Chứng minh rằng \(HB\) vuông góc \(AB\) và tính thể tích khối chóp \(S.ABC\) theo \(a\)
Cho hình chóp S.ABC đáy ABC là tam giác vuông cân tại với BA=BC=a, SA=a vuông góc với đáy. Gọi M, N là trung điểm AB và AC .Tính cosin góc giữa 2 mp (SAC) và (SBC)
Bạn nào giúp mình với ^^
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
Cho hình chóp S.ABC có đáy tam giác ABC là tam giác vuông tại B, \(BA=3a,BC=4a\), mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết \(SB=2a\sqrt{3},\widehat{SBC}=30^o\).
Tính thể tích của khối chóp S>ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a
cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C, BC=a. Hình chiếu vuông góc của S lên mặt phẳng ABC là trung điểm H của cạnh AB, biết rằng SH=2a. Tính theo a thể tích khổi chóp và khoảng cách từ điểm B đế (MAC) với M là trung điểm SB
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=BC=2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AM; Mặt phẳng qua SM và song song với B, cắt AC tại N. Biết góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 60 độ. Tính thể tích của khối chóp S.BCNM và khoảng cách giữa 2 đường thẳng AB và SN theo a.
Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, \(AB=a\sqrt{2},SA=SB=SC\). Góc giữa đường thẳng và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, góc ACB = 30 độ. Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH = \(\sqrt{2}a\). Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)