Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sengoku

Cho hình chóp đều S ABCD, đáy ABCD là hình vuông cạnh 2a , tâm O . Gọi M là trung điểm SA.Tính d (OM;SB) Biết (MCD) ⊥ (SAB)

Nguyễn Việt Lâm
30 tháng 8 2021 lúc 23:40

Dựng hình như hình vẽ (E, P, Q, N lần lượt là trung điểm các cạnh)

\(MN||AB\Rightarrow N\in\left(MCD\right)\)

F là giao điểm MN và SE \(\Rightarrow\) F cũng là trung điểm SE

Do tính đối xứng của chóp đều \(\Rightarrow MP=NP\Rightarrow PF\perp MN\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow PF\perp\left(SAB\right)\) (do MN là giao tuyến của 2 mp vuông góc)

\(\Rightarrow PF\perp SE\Rightarrow\Delta SEP\) cân tại P (PF là trung tuyến kiêm đường cao)

\(\Rightarrow\Delta SEP\) đều (do chóp đều nên SEP cũng cân tại S)

\(\Rightarrow SO=a\sqrt{3}\)

MN song song và bằng 1/2 AB (đường trung bình)

OQ song song và bằng 1/2 AB (hiển nhiên)

\(\Rightarrow MNQO\) là hbh \(\Rightarrow OM||NQ\Rightarrow OM||\left(SBC\right)\)

\(\Rightarrow d\left(OM;SB\right)=d\left(OM;\left(SBC\right)\right)=d\left(O;\left(SBC\right)\right)\)

Từ O kẻ \(OH\perp SQ\Rightarrow OH=d\left(O;\left(SBC\right)\right)\)

\(\dfrac{1}{OH^2}=\dfrac{1}{OQ^2}+\dfrac{1}{SO^2}=\dfrac{1}{a^2}+\dfrac{1}{3a^2}\Rightarrow OH\)

Sengoku
30 tháng 8 2021 lúc 22:29

@Nguyễn Việt Lâm ơi đại ca giúp em với

Nguyễn Việt Lâm
30 tháng 8 2021 lúc 23:40

undefined


Các câu hỏi tương tự
Trần Phong
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Nguyễn Mai Khánh Huyề...
Xem chi tiết
Trang Võ Thị
Xem chi tiết
Trần Khánh Vân
Xem chi tiết
Bảo Bảo
Xem chi tiết
Tùng Lâm Nguyen
Xem chi tiết
Bảo Ly
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết