a: Xét tứ giác EBDA có
EB//DA
EB=DA
DO đó: EBDA là hình bình hành
b: Xét tứ giác ABDF có
AB//DF
AB=DF
Do đó: ABDF là hình bình hành
SUy ra: BD//AF
mà BD//AE
nen E,A,F thẳng hàng
a: Xét tứ giác EBDA có
EB//DA
EB=DA
DO đó: EBDA là hình bình hành
b: Xét tứ giác ABDF có
AB//DF
AB=DF
Do đó: ABDF là hình bình hành
SUy ra: BD//AF
mà BD//AE
nen E,A,F thẳng hàng
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
cho tam giác ABC, các điểm M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, trên tia đối của tia NP lấy điểm D sao cho ND=NP.
a) chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Cho hình bình hành ABCD. Trên tia đối của tia BA lấy điểm E sao cho BE=AD. Trên tia đối của tia DA lấy điểm F sao cho DF=AB. Chứng minh điểm E,C F thẳng hàng.
Giúp mình với!!!!!
Bài 2: Cho ∆ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Trên tia đối của tia CB lấy điểm E sao cho CE = CA. Kẻ BH ⊥ AD, CK ⊥ AE. Chứng minh rằng:
a) AH = HD b) HK // BC
Bài 3: Cho hình thang ABCD (AB // CD). Các đường phân giác của góc ngoài tại đỉnh A và D cắt nhau ở M. Các đường phân giác của góc ngoài tạo đỉnh B và C cắt nhau ở N.
a) Chứng minh: MN // CD
b) Tính chu vi ABCD biết MN = 4cm.
Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
Cho tam giác ABC,các điểm M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC.Trên tia đối của tia NP lấy điểm D sao cho ND=NP
a)Chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Mình biết làm câu a,b rồi các bạn làm câu c được không ?
cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . gọi E , F theo thứ tự là trung điểm của BC và AD.
a, tứ giác ECDF là hình gì . vì sao
b, tứ giác ABED là hình gì . vì sao c)gọi m là điểm đối xứng của a qua b.cm:bmcd là hình chữ nhật d)cm: m e d thảng hàng