Cho hình vuông ABCD có hai đường chéo AC và BD cắt nhau tại O. Trên cạnh AB lấy M (0<MB<MA) và trên cạnh BC lấy N sao cho góc MON=90*. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE.
a)Chứng minh tam giác MON vuông cân.
b)Chứng minh MN // BE.
c)Chứng minh CK vuông góc với BE.
d) Qua K vẽ đường song song với OM cắt BC tại H .Chứng Minh KC/KB+KN/KH+CN/BH=1
Cho △ABC vuông tại A có đường cao AH
a) Chứng minh: △ABH ~ △CBA. Từ đó suy ra: AB2 = BH.BC
b) Trên cạnh BC, lấy một điểm D sao cho BA=BD. Đường thẳng D và vuông góc với AB tại K cắt AH ở điểm E. Chứng minh BE là phân giác của góc ABC
c) Chứng minh: \(\frac{DH}{DC}\)= \(\frac{BH}{B\text{D}}\)
Cho tam giác ABC có AB = 6cm, AC = 9cm, BC = 12cm. Trên cạnh AB lấy điểm D sao cho AD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 3cm.
a) Chứng minh tứ giác BCED là hình thang
b) Tính DE.
c) Gọi O là giao điểm của BE và CD. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt BD, CE lần lượt tại I và K . Chứng minh OI = OK.
d) Chứng minh: \(\frac{ID}{BD}+\frac{KC}{EC}=1\)
Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh rằng: a) BEF đồng dạng DEA b) EG.EB=ED.EA c) AE2 = EF . EG
cho hình chữ nhật ABCD. AB=30cm, AD=40cm. Trên AD lấy điểm F sao cho BF=BC, đường trung trực của CF cates DC tại E. EF cắt AB tại P a) Chứng minh tam giác PAF đồng dạng tam giác FAB b) Tính độ dài PB c) Chứng minh góc CPB = góc DBC d) Chứng minh PC_|_BD
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
Cho
ΔABC∆ABC
vuông tại A có phân giác BD, AB = 6 cm, AC = 8cm. Đường thẳng vuông góc với AC tại D cắt BC ở E.
a) Tính AD? DC?
b) Chứng minh rằng
Δ CED ∆ CED
đồng dạng với
Δ CBA∆ CBA
?
c) Kẻ DF // BC (F nằm trên BA). Chứng minh rằng
BÀI 1
Cho tam giác vuông ABCD ( góc A =90o), đường cao AH. Biết BH=4cm, CH=9cm.
a. chứng minh AB2 =BH.BC
b. tính AB,AC
c. đường phân giác BD cắt AH tại E (D thuộc AC). Tính \(\dfrac{S_{EBH}}{S_{DBA}}\) và chứng minh \(\dfrac{EA}{EH}=\dfrac{DC}{DA}\)
Cho hình thang ABCD có AB // CD, I là giao điểm của 2 đường chéo AC và BD. Đường thẳng qua I song song với hai đáy cắt AD, BC lần lượt tại M,N .
a) Chứng Minh : IAB đồng dạng với ICD
b) Chứng Minh : IM=IN