+ Từ đẳng thức \(\dfrac{BA}{BF}+\dfrac{BC}{BE}=4\) ta có thể viết được 1 đẳng thức
tương tự : \(\dfrac{AB}{AF}+\dfrac{AD}{AK}=4\)
\(\Rightarrow\dfrac{AB}{AF}+\dfrac{AD}{AK}+\dfrac{BA}{BF}+\dfrac{BC}{BE}=8\)
\(\Rightarrow AB\left(\dfrac{1}{AF}+\dfrac{1}{BF}\right)+BC\left(\dfrac{1}{AK}+\dfrac{1}{BE}\right)=8\)
+ Áp dụng bđt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) ta có :
\(AB\left(\dfrac{1}{AF}+\dfrac{1}{BF}\right)+BC\left(\dfrac{1}{AK}+\dfrac{1}{BE}\right)\)
\(\ge AB\cdot\dfrac{4}{AF+BF}+BC\cdot\dfrac{4}{AK+BE}\)
\(\Rightarrow8\ge AB\cdot\dfrac{4}{AB}+4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow8\ge4+4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow4\ge4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow1\ge\dfrac{BC}{AK+BE}\) \(\Rightarrow AK+BE\ge BC\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}AF=BF\\AK=BE\end{matrix}\right.\)
\(\Leftrightarrow\) F là trung điểm của AB
* CM : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
+ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương
nên bđt đã cho luôn đúng