Cho tam giác ABC và trung tuyến AM, điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của CO và AB. Từ M kẻ đường thẳng song song với OC cắt AB tại H và kẻ đường thẳng song song với OB cắt AC tại K. Chứng minh rằng:
a) EF // HK b) EF // BC
~ Giải giúp mình với ~ Cảm ơn ~
Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:
a)\(\frac{BD}{BC}=\frac{1}{3}\)
b)\(BD=DE=EC\)
Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.
Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.
Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:
a)EF//HK
b)EF//BC
Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:
a)\(DA.EG=DB.DE\)
b)\(HC^2=HE.HA\)
c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)
Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
Cho ΔABC, trung tuyến AM, I ∈ AM. {E} = BI giao AC, {F} = CI giao AB. Qua A kẻ đường thẳng // BC cắt BE, CF lần lượt tại K và H. Chứng mình rằng:
a) AH = AK
b) EF // BC
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
Cho tam giác ABC, AM là đường trung tuyến. Đường thẳng d// BC cắt AB,AC,AM lần lượt tại D,E,N.
a) Chứng minh rằng: N là trung điểm DE
b) Gọi S là giao điểm BN và AC. K là giao điểm AB và CN. Chứng minh rằng: SK//BC
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. M,N lần lượt là trung điểm của BO và AO. Gọi F là một điểm bất kì trên AB. FN cắt AD tại , FM cắt BC tại E
Cho (BA/BF) + (BC/BE) =4. Chứng minh rằng BE+AK lớn hơn hoặc bằng BC
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID