§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng với điểm M bất kì ta có \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)

Bùi Thị Vân
12 tháng 5 2017 lúc 16:28

Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).


Các câu hỏi tương tự
vung nguyen thi
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Lê Mai
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Quỳnh Hà
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Lê Mai
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết