Cho tam giác ABC vuông tại A (AB< AC) có trung tuyến AM .Vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F.
a / Chứng minh rằng: Tứ giác AEMF là hình chữ nhật?
b / Gọi N là điểm đối xứng của M qua F. Chứng minh tứ giác ABMN là hình bình hành ? c/ Vẽ AH vuông góc với BC tại H. Chứng minh rằng: Tứ giác HMFE là hình thang cân? d/ Gọi I là trung điểm của NC. Chứng minh I, F, E thẳng hàng.
Cho tam giác ABC vuông ở A, đường phân giác CD (D thuộc AB). Gọi H là hình chiếu của B trên đường thẳng CD. Trên đường thẳng CD lấy điểm E sao cho H là trung điểm của đoạn thẳng ED. GỌi F là giao điểm của BH và CA.
a) Chứng minh tam giác BHE = tam giác BHD và BF là tia phân giác của góc EBD
b) Chứng minh góc FBA = góc FCH
c) Chứng minh EB // FD
Help mik ik tối nay mình đi học thêm rồi, helppp~
Cho tam giác abc vuông tại a có m là trung điểm của bc (ab>ac).vẽ me vuông góc với ac tại e,mf vuông góc với ad tại f . Cm tứ giác afme là hình chữ nhật
Cho tam giác ABC vuông góc A có góc C bằng 30độ.trên cạnh AB lấy điểm M sao cho góc BCM bằng 2/3 góc ACB, trên cạnh AC lấy điểm N sao cho góc CBN bằng 2/3 góc ABC. Gọi giao điểm của CM và BN là K
a) Tính góc CKN
b) gọi F và I theo thứ là hình chiếu của điểm K trên BC và AC. Trên tia đối của tia IK lấy điểm D sao cho IK=ID, trên tia KF lấy điểm E sao cho KF=FE
Chứng minh tam giác DBC là tam giác đều
Đề HSG..
Giúp mik vs
Cho tam giác ABC có AB<AC.M là trung điểm của BC.Lấy điểm Đ trên tia dối của tia MÀ sao cho MD=MA
a)CM tam giác ABM= tam giác DCM
b)Kẻ AH vuông góc BC,DK vuông góc BC.CM BH=CK
c)Gọi E và F lần lượt là trung điểm của AB và CD.CM EH//KF
Cho ABC vuông tại A có đường cao AH. Goi E, F lần lượt là trung điểm của AB, AC a/ Chứng minh BEFC là hình thang và EF AH. b/ Gọi I, K lần lượt là hình chiếu của E, F lên BC. Chứng minh EFKI là hình chữ nhật. c/ Chứng minh IH = IB và KH = KC giúp e nhanh với
Trên cạnh BC của tam giác ABC , lấy các điểm E và F sao cho BE = CF . Qua E và F , vẽ các đường thằng song song với BA , chúng cắt cạnh AC theo thứ tự tại G và H . Chứng minh rằng EG + FH = AB
Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. CMR: EF = \(\frac{1}{2}\) CD.