Bài 7. Trường hợp đồng dạng thứ hai của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho Hình 77, chứng minh

a) \(\widehat {ABC} = \widehat {BED}\)

b) \(BC \bot BE\)

a) Ta thấy \(\frac{{AB}}{{DE}} = \frac{2}{4} = \frac{1}{2};\,\,\frac{{AC}}{{DB}} = \frac{2,5}{5} = \frac{1}{2}\)                                         

\( \Rightarrow \frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\)

Xét tam giác ABC và tam giác DEB có:

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\) và \(\widehat {CAB} = \widehat {BDE} = 90^\circ \)

\( \Rightarrow \Delta ABC \backsim \Delta DEB\) (c-g-c)

\( \Rightarrow \widehat {ABC} = \widehat {BED}\)

b) Vì \(\Delta ABC \backsim \Delta DEB\) nên \(\widehat {ACB} = \widehat {DBE}\)

Mà tam giác ABC vuông tại A nên \(\widehat {ACB} + \widehat {ABC} = 90^\circ \) hay \(\widehat {DBE} + \widehat {ABC} = 90^\circ \)

Ta thấy

\(\begin{array}{l}\widehat {DBE} + \widehat {CBE} + \widehat {ABC} = 180^\circ \\ \Rightarrow \widehat {CBE} + 90^\circ  = 180^\circ \\ \Rightarrow \widehat {CBE} = 90^\circ \end{array}\)

Vậy \(BC \bot BE\).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết