Lời giải:
a)
Với $a=1$ thì hệ trở thành:
\(\left\{\begin{matrix}
2x+y=-4\\
x-3y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
6x+3y=-12\\
x-3y=5\end{matrix}\right.\)
\(\Rightarrow 7x=-12+5=-7\Rightarrow x=-1\)
\(y=-4-2x=-4-(-2)=-2\)
Vậy HPT có nghiệm $(x,y)=(-1,-2)$
b)
Từ PT\((1)\Rightarrow x=\frac{-4-ay}{2}\)
Thay vào PT$(2)$: \(a.\frac{-4-ay}{2}-3y=5\)
\(\Leftrightarrow y(a^2+6)=-4a-10(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $y$ duy nhất. Dễ thấy $a^2+6\neq 0$ với mọi $a\in\mathbb{R}$ nên PT $(*)$ luôn có nghiệm duy nhất với mọi $a$
Vậy $a\in\mathbb{R}$
Lời giải:
a)
Với $a=1$ thì hệ trở thành:
\(\left\{\begin{matrix}
2x+y=-4\\
x-3y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
6x+3y=-12\\
x-3y=5\end{matrix}\right.\)
\(\Rightarrow 7x=-12+5=-7\Rightarrow x=-1\)
\(y=-4-2x=-4-(-2)=-2\)
Vậy HPT có nghiệm $(x,y)=(-1,-2)$
b)
Từ PT\((1)\Rightarrow x=\frac{-4-ay}{2}\)
Thay vào PT$(2)$: \(a.\frac{-4-ay}{2}-3y=5\)
\(\Leftrightarrow y(a^2+6)=-4a-10(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $y$ duy nhất. Dễ thấy $a^2+6\neq 0$ với mọi $a\in\mathbb{R}$ nên PT $(*)$ luôn có nghiệm duy nhất với mọi $a$
Vậy $a\in\mathbb{R}$