Để pt có nghiệm duy nhất \(\Leftrightarrow-6-a^2\ne0\Rightarrow a^2\ne-6\) (luôn đúng)
Vậy hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}6x+3ay=-12\\a^2x-3ay=5a\end{matrix}\right.\) \(\Rightarrow\left(a^2+6\right)x=5a-12\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5a-12}{a^2+6}\\y=\frac{-4a-10}{a^2+6}\end{matrix}\right.\)
\(x+y>1\Leftrightarrow\frac{5a-12}{a^2+6}+\frac{-4a-10}{a^2+6}>1\Leftrightarrow a-22>a^2+6\)
\(\Leftrightarrow a^2-a+28< 0\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\frac{111}{4}< 0\) (vô lý)
Vậy ko tồn tại a thỏa mãn