a: Xét ΔHDA vuông tại H và ΔADB vuông tạiA có
góc ADB chung
Do đo: ΔHDA đồng dạng với ΔADB
b: Ta có: ΔHDA đồg dạng với ΔADB
nen DH/DA=DA/DB
hay \(DA^2=DH\cdot DB\)
a: Xét ΔHDA vuông tại H và ΔADB vuông tạiA có
góc ADB chung
Do đo: ΔHDA đồng dạng với ΔADB
b: Ta có: ΔHDA đồg dạng với ΔADB
nen DH/DA=DA/DB
hay \(DA^2=DH\cdot DB\)
Hình chữ nhật ABCD có AB = 8 cm, BC = 6 cm, vẽ AH ⊥ BD (H ∈ BD).
a) Tính diện tích ∆ADB
b) Tính độ dài đường cao AH.
b) Chứng minh ∆AHB ∽ ∆
c) Chứng minh AD2 = DH.DB.
Cho hình chữ nhật ABCD. Kẻ AH BD (H BD).
a) Chứng minh: đồng dạng với
b) Chứng minh: AD2 = DB.HD
c) Tia phân giác của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh: AK.AM = BK.HM
d) Gọi O là giao điểm của AC và BD. Lấy P thuộc AC, dựng hình chữ nhật AEPF (E∈ AB, F ∈ AD). BF cắt DE ở Q. Chứng minh rằng: EF//DB và 3 điểm A, Q, O thẳng hàng.
Toán nâng cao 8 !!!
Cho hình chữ nhật ABCD. KẺ AH BD (HBD)
a, Chứng minh: tam giác HDA đồng dạng tam giác ADB
b, Chứng minh: AD2=DB.HD
c, Tia phân giác của goc ADB cắt AH và AB lần lượt tại M và K. Chứng minh AK.AM=BK.HM
d, Gọi O là giao điểm của AC và BD. Lấy P thuộc AC, dựng hình chữ nhật AEPF (). BF cắt DE ở Q. CHứng minh rằng: và 3 điểm A, Q, O thẳng hàng
Cho hình chữ nhật ABCD. Kẻ AH BD (H BD).
a) Chứng minh: đồng dạng với
b) Chứng minh: AD^2 = DB.HD
c) Tia phân giác của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh: AK.AM = BK.HM
d) Gọi O là giao điểm của AC và BD. Lấy P thuộc AC, dựng hình chữ nhật AEPF (E∈ AB, F ∈ AD). BF cắt DE ở Q. Chứng minh rằng: EF//DB và 3 điểm A, Q, O thẳng hàng.
cho hình chữ nhật ABCD có AB=8cm, AD=6cm. từ A hạ AH vuông góc BD(H thuộc BD)
a.cmr:AD.AB=AH.DB
b.tính AH
c.tính diện tích hình thang AHCB
Cho hcn ABCD có AB>AD.Kẻ AH vuông góc với BD tại H.
a)Cm ∆HAD đồng dạng với ∆ ABD.
b) Cm AH ^2 = HB.HD
c)ết AD = 6cm,AB=8cm.Tính diện tích của ∆HAD.
d) Trên tia đối của tia AD lấy điểm E sao cho AE<AD .Kẻ EM vuông góc với BD tại M,EM cắt AB tại Ở.Kẻ AK vuông góc với BE tại K và AF Vuông góc với OD tại F .Cm bà điểm H ,F,K thẳng hàng.
Giúp mình với nha ☺️☺️
Cho hcn ABCD. Kẻ AH vuông góc BD (H thuộc BD).
a. Tia pg của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh:
AK.AM = BK.HM
b/ Gọi O là giao của AC và BD lấy P thuộc AC, dựng hình chữ nhật AEPF (E thuộc AB và F thuộc AD) BF cắt DE ở Q. Chứng minh:
+EF//DB
+A,O,Q thẳng hàng
Cho hình thang ABCD, AB//CD, AC vuông góc với BD a, CM: AB^2+CD^2= AD^2+ BC^2 b, AC^2+BD^2=(AB+CD)^2c, Kẻ đường cao AH , , đường trung bình MN của hình thang ABCD biết BD=9cm, AC=12cm. Tính diện tích tứ giác AMHN
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.