Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho hình chữ nhật ABCD có AB>AD. Kẻ AH vuông góc BD( H thuộc BD).Trên tia đối tia AH lấy điểm E sao cho AE = BD
a)Tam giác EAC là tam gì
b)Tính góc ECD
Cho hình thang cân ABCD, AB // CD, AB < CD. Kẻ đường cao AH, biết AH= 8cm, HC = 12 cm. Tính diện tích ABCD
Cho hình chữ nhật ABCD có AB = 8cm, BD = 10cm. Trên các cạnh AB, AD lần lượt lấy các điểm E; F sao cho AE = AF = 3cm.
a, Tính diện tính của hình chữ nhật ABCD
b, Tính diện tích của đa giác EBCDF
cho tam giác ABC (A=90 độ),AB=6cm, AC=8cm vẽ đường cao AH đường phân giác BD của góc B cắt AH tại I. (D thuộc AC)
a.cm tam giác HAC đồng dạng với tam giác ABC
b.tính BC và HC
c.cm AB.BI=BD.HB
d.tính tỉ số diện tích của 2 tam giác HAC và HBA
cho hình thang ABCD(AB//CD).đường trung bình MN của hình thang (M\(\in\)AD,N\(\in\)BC) cắt đường chéo AC,BD thứ tự tại E,F
a.c/m ME=FN
b.cho AB=6cm,CD=8cm.tính EF
Cho hình thang ABCD (AB song song với CD, AB>CD) có diện tích bằng 1 và \(BD\ge AC\). CHứng minh: \(BD\ge\sqrt{2}\)
Cho hình thang ABCD, AB//CD, AC vuông góc với BD a, CM: AB^2+CD^2= AD^2+ BC^2 b, AC^2+BD^2=(AB+CD)^2c, Kẻ đường cao AH , , đường trung bình MN của hình thang ABCD biết BD=9cm, AC=12cm. Tính diện tích tứ giác AMHN
Cho tam giác ABC vuồn tại A, AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I.
a, Chứng minh \(\Delta\)ABH đồng dạng \(\Delta\)CBA
b, Tính AD, DC
c, AB.BI = BD.HB
d, Tính diện tích tam giác BHI