Cho hình vuông ABCD kẻ đường thẳng qua A cắt BC tại E và đường thẳng CD tại F
Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AE^2}=\dfrac{1}{AF^2}\)
Mn cho mình hỏi 3 bài toán hình đc k ạ. Mình chỉ mới học đến bài hệ thức lượng trong tam giác vuông thôi nhé.
Bài 1: Tam giác ABC có AB = 6cm AC = 8cm. 2 đường trung tuyến BD và CH vuông góc. BC=?
Bài 2 : Cho hcn ABCD có AB=2BC. Trên cạnh BC lấy E bất kì . Tia AE cắt CD tại F. CM : \(\dfrac{1}{^{ }AB^2}\) =\(\dfrac{1}{AE^2}\) + \(\dfrac{1}{4AF^2}\)
Bài 3 : Cho hình thoi ABCD có góc A = \(120^o\), tia Ax tạo với tia AB góc Bax= \(15^o\) và cắt BC tại M, cắt DC tại N. CM \(\dfrac{1}{AM}\) + \(\dfrac{1}{AN}\) = \(\dfrac{\text{4}}{3AB^2}\).
Cảm ơn mọi người.
Cho hình chữ nhật ABCD, AB=2BC.TRên cạnh BC lấy điểm E, tia AE cắt CD tại F, vẽ AK\(\perp\)AF(K\(\in\)CD):
CMR:\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
cho hình chữ nhật ABCD. Đường thẳng d ⊥ AC tại C. Đường thẳng AB cắt d tại E và đường thẳng AD cắt đường thẳng d tại f a) CM \(\dfrac{AE^2}{AF^2}=\dfrac{CE}{CF}\) b) BD3 =BE.DF.EF
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh:
\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4DF^2}\)
1. Cho tam giác ABC vuông tại A, đường cao AH. Từ trung điểm E của AC vẽ EF vuông góc với BC tại F. Chứng minh:
a) EF2=\(\dfrac{BH.CH}{4}\)
b) AF=BE.cosC
Cho hình thoi ABCD ,cạnh a và góc A =120 độ .Qua A vẽ 1 đường thẳng tạo với AB một góc 15 độ . Đường thẳng này cắt cạnh BC ở E và cắt đường thẳng CD ở F. Chứng minh rằng : \(\dfrac{4}{3AB^2}\) =\(\dfrac{1}{AE^2}\)+\(\dfrac{1}{AF^2}\)
Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Cmr: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)