Cho hình vuông ABCD kẻ đường thẳng qua A cắt BC tại E và đường thẳng CD tại F
Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AE^2}=\dfrac{1}{AF^2}\)
Cho hình vuông ABCD , điểm E thuộc BC , tia AE cắt CD tại G. Trên nửa mặt phẳng bờ là đường thẳng AE chứa AD, kẻ AF vuông góc với AE và AF = AE
a) C/m 3 điểm F , C , D thẳng hàng
b) C/m \(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AG^2}\)
Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
cho hình chữ nhật ABCD , AB=5,BC=12 . Vẽ BH vuông góc AC tại H a, Tính AC , BH b, Tia BH cắt đường thẳng DC tại K và cắt AD tại N. CM: BH^2= HN . HK c , CM : cotBAC + cotBCA = AC/BH
1. cho tam giác ABC vuông cân tại A, đường cao AH= 2cm. Tính độ dài mỗi cạnh A
2. cho hình vuông ABC D, qua A vẽ đường thẳng cách cạnh BC vad cắt đường thẳng DC lần lượt tại E và F. Vẽ đường thẳng Ax vuông góc AF cắt đường thẳng DC tại G. ch/m:
a, ΔADG = ΔABE
b, \(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Cho hình chữ nhật ABCD có AD=6cm, CD=8cm. Qua D kẻ đường thẳng vuông góc với AC cắt AC tại E và cắt AB tại F. Tính độ dài BF=?
cho tam giác ABC, một điểm M tùy ý trong tam giác. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, Ac, AB tại D,E, F. Chứng minh rằng: \(\dfrac{AM}{AD}+\dfrac{BM}{BE}+\dfrac{CM}{CF}\) là hằng số
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh:
\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4DF^2}\)
Cho Δ ABC vuông tại A, cạnh AB= 6cm, AC=8cm, Các đường phân giác trong và ngoài tạo B cắt đường thẳng AC theo thứ tự tại E và F. Tính độ dài AE và AF