Tìm m để hàm số y = \(\dfrac{2x-2}{x+1}\) cắt đường thẳng y = 2x + m tại hai điểm phân biệt A, B sao cho AB = \(\sqrt{5}\)
Cho hàm số y =\(\dfrac{2x-1}{x+2}\) (C) và đường thẳng d : y = mx - 2 . tìm m để (C) cắt d tại hai điểm phân biệt A , B sao cho I ( 2 ;0 ) là trung điểm của AB
Bài 6: Cho hàm số \(y=2x^2+bx+c\) . Tìm b , c biết đồ thị của nó có trục đối xứng x =1 và cắt trục tung tại điểm có tung độ là 4
Cho hàm số : \(y=x^2-\left(m+2\right)x+m^2+1\)
Tìm m để ĐTHS cắt Ox tại 2 điểm phân biệt coa hoành độ là \(x_1;x_2\) để \(A=x_1^2\left(x_1+1\right)+x_2^2\left(x_2+1\right)\) đạt GTLN
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
có 2 nghiệm phân biệt
tìm m để pt \(\left(\sqrt{5m^2-2m-2}+m-1\right)\left(x+1\right)^3+x^2-x-3=0\) có ít nhất 1ngiệm thuộc (-1;0)
xác định hàm số bậc 2 y=ax^2-4x+c,biết ràng đồ thị của nó:
A,đi qua 2 điểm A(1;-2)và B(2;3)
B, co đỉnh là I(-2;-1)
C,có hoành độ bằng -3 và đi qua điểm P(-2;1)
D,có trục đối xứng là đường thẳng x=2 và đi qua M(3;0)