cho hàm số y=f(x)=|\(\frac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
tìm điều kiện xác định
b)chung minh f(-x)=-f(x)
cho hàm số y=f(x)=\(\frac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
tìm điều kiện xác định
Cho \(f\left(x\right)=ax^3+4x\left(x^2-1\right)+8\) và \(g\left(x\right)=x^3+4x\left(bx+1\right)+c-3\) xác định a, b, c để \(f\left(x\right)=g\left(x\right)\)
Xác định đa thức f(x) có bậc ba thỏa mãn: \(f\left(x+1\right)-f\left(x\right)=x^2\left(\forall x\right)\) và \(f\left(2\right)=2020\)
Các số dương x,y,z thỏa mãn điều kiện x+y+z=1.Tìm GTNN của biểu thức
F=\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
Cho hai hàm số f(x)=\(x^2\) và g(x)=3-x
a.tính f(-3), f\(\left(-\dfrac{1}{2}\right)\), f(0), g(1), g(2), g(3)
b,xác định a để 2f(a)=g(a)
Cho đa thức f(x) và 2 số \(a\ne b\). Biết \(f\left(x\right):x-a\) dư \(r_1\); \(f\left(x\right):x-b\) dư \(r_2\). Tìm dư f(x) chia cho \(\left(x-a\right).\left(x-b\right)\)
Cho \(f\left(x\right)=x^2-2\left(m+2\right)x+6m+1\)
a, Chứng minh rằng phương trình \(f\left(x\right)=0\) có nghiệm với mọi m.
b, Đặt \(x=t+2\). Tính \(f\left(x\right)\) theo t, từ đó tìm điều kiện đối với m để phương trình \(f\left(x\right)=0\) có hai nghiệm lớn hơn 2.
Cho \(f\left(x\right)=x^2-2\left(m+2\right)x+6m+1\)
a, Chứng minh rằng phương trình \(f\left(x\right)=0\) có nghiệm với mọi m.
b, Đặt \(x=t+2\). Tính \(f\left(x\right)\) theo t, từ đó tìm điều kiện đối với m để phương trình \(f\left(x\right)=0\) có hai nghiệm lớn hơn 2.