- Thay \(x=1-\sqrt{2}\) vào hàm số f(x) ta được :
\(y=\frac{\left(1-\sqrt{2}\right)^2}{\sqrt{2}-1}=\frac{\left(\sqrt{2}-1\right)^2}{\sqrt{2}-1}=\sqrt{2}-1\)
- Thay \(x=\sqrt{2}-2\) vào hàm số f(x) ta được :
\(y=\frac{\left(\sqrt{2}-2\right)^2}{\sqrt{2}-1}=\frac{6-4\sqrt{2}}{\sqrt{2}-1}\)
- Ta thấy : \(0< 2\)
=> \(3-2\sqrt{2}< 2\left(3-2\sqrt{2}\right)\)
=> \(3-2\sqrt{2}< 6-4\sqrt{2}\)
=> \(\left(\sqrt{2}-1\right)^2< 6-4\sqrt{2}\)
=> \(\sqrt{2}-1< \frac{6-4\sqrt{2}}{\sqrt{2}-1}\)
Vậy \(f_{\left(1-\sqrt{2}\right)}< f_{\left(\sqrt{2}-2\right)}\)