\(y'=\dfrac{-2}{\left(x-1\right)^2}\)
Gọi điểm trên trục tung có tọa độ \(M\left(0;m\right)\)
Đường thẳng d qua M có dạng: \(y=kx+m\)
d không tiếp xúc đồ thị hàm số khi và chỉ khi:
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}=kx+m\\k=\dfrac{-2}{\left(x-1\right)^2}\end{matrix}\right.\) vô nghiệm
\(\Rightarrow\dfrac{x+1}{x-1}=\dfrac{-2x}{\left(x-1\right)^2}+m\) vô nghiệm
\(\Rightarrow\left(m-1\right)x^2-2\left(m+1\right)x+m+1=0\)
\(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+1\right)< 0\)
\(\Leftrightarrow2m+2< 0\)
\(\Rightarrow m< -1\)
Hay \(y< -1\)