\(\left(3a+5b\right)^2=144\)
\(\Rightarrow9a^2+25b^2+30ab=144\)
+ \(\Rightarrow144\ge2\sqrt{9a^2\cdot25b^2}+30ab\)
\(\Rightarrow60ab\le144\Rightarrow ab\le\frac{12}{5}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}9a^2=25b^2\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\)
\(\Leftrightarrow3a=5b=6\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)