tìm các số hữu tỉ x,y thỏa mãn
\(\sqrt{2\sqrt{3}-3}=\sqrt{x.\sqrt{3}}-\sqrt{y.\sqrt{3}}\)
a, cho a,b,c là các số hữu tỉ khác nhau.CMR:\(\sqrt{\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(a-c\right)^2}}\)
là 1 số hữu tỉ
a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)
b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
Cho ba số hữu tỷ x, y, z đôi một phân biệt. Chứng minh rằng: \(B=\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là số hữu tỷ
Giả sử x và y là hai số thỏa mãn x> y và xy = 1. Tìm GTNN của biểu thức: A=\(\dfrac{x^2+y^2}{x-y}\)
cho a,b,c là các số hữu tỉ dương thỏa mãn
\(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)
CMR \(\sqrt[2014]{a}+\sqrt[2014]{b}+\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)
cho các số thực dương x, y, z thỏa mãn x+y+z=1
chứng minh\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}=< 3\)
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Cho biểu thức P=(\(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)+\(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\)):(\(\dfrac{x+y+2xy}{1-xy}\)+1)
a) Rút gọn P
b) Tính giá trị của P tại x=\(\dfrac{2}{2+\sqrt{3}}\)
c) Chứng minh: P≤1