Phản ví dụ:
\(\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)\left(ab+1\right)=1.1=1< 4\)
Do đó đề bài sai
Phản ví dụ:
\(\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)\left(ab+1\right)=1.1=1< 4\)
Do đó đề bài sai
cho a,b dương CMR \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Cho a,b,c \(\ge0\) và a+b+c=1.Chứng minh rằng: a+2b+c \(\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Bài 1: a, b, c là 3 cạnh của tam giác. CMR:
\(\dfrac{a^2}{b+c-a}+\dfrac{b^2}{c+a-b}+\dfrac{c^2}{a+b-c}\ge a+b+c\)
Bài 2: a, b là số dương. CMR:
\(ab+\dfrac{a}{b}+\dfrac{b}{a}\ge a+b+1\)
Bài 3: a,b,c>0 thỏa mãn: (a+c)(b+c)=1. CMR:
\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(a+c\right)^2}+\dfrac{1}{\left(b+c\right)^2}\ge4\)
a) Cho a, b, c là ba số đôi 1 khác nhau:
Tính \(S=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ac}{\left(a-b\right)\left(b-c\right)}\)
b) C/m: \(a^4+3\ge4a\)
Cho a, b là các số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CMR: \(1+ab\) là bình phương của 1 số hữu tỉ
cho a,b,c đôi một khác nhau thõa mãn ab+bc+ac=1
Tính giá trị biểu thức :
a)A\=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b)B=\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Cho a + b + c + d = 0 và ab + bc + ca = 1
Tính \(P=\dfrac{\left(ab-cd\right)\left(bc-ad\right)\left(ac-bd\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho a,b\(\in R\) thoa man \(a^2+b^2=2\left(8+ab\right)\) va \(a< b\) Tinh P=\(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)+64\)
Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2.\) Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c.\right)\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c