a: Xét ΔAOC và ΔBOD có
OA=OB
góc AOC=góc BOD
OC=OD
Do đó: ΔAOC=ΔBOD
b: Xét tứ giác ACBD có AB cắt CD tại trung điểm của mỗi đường
nên ACBD là hình bìh hành
Suy ra: AD=BC và AD//BC
a: Xét ΔAOC và ΔBOD có
OA=OB
góc AOC=góc BOD
OC=OD
Do đó: ΔAOC=ΔBOD
b: Xét tứ giác ACBD có AB cắt CD tại trung điểm của mỗi đường
nên ACBD là hình bìh hành
Suy ra: AD=BC và AD//BC
Cho hai đoạn thẳng AB và DC cắt nhau tại trung điểm của mỗi đoạn thẳng. Chứng minh rằng:
a, Tam giác AOC= Tam giác BOD
b, AD=BC và AD song song với BC
Cho ΔABC vuông tại A có AB =9cm, BC =15 cm, vẽ AD ⊥ BC (D ⊥ BC).
a) Tính AC, so sánh BD và DC.
b) Trên đoạn thẳng DC lấy điểm N sao cho DB = DN. Chứng minh ΔABN lầ tam giác cân.
c) Kẻ BE ⊥ AN cắt AD tại H. Chứng minh NH ⊥ AB.
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.Kẻ MD vuông góc với BC tại D.a) Chứng minh tam giác BAD cân.b) Chứng minh BM là đường trung trực của đoạn thẳng AD.c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .d) Chứng minh AD // EC.
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD