cho a,b,c là số đo của các góc nhọn thỏa mãn \(\cos^2a+\cos^2b+\cos^2c\)\(\ge\)2
Chứng minh rằng:\((\tan a\times\tan b\times\tan c)^2\le\frac{1}{8}\)
cho cot a = 8/15 tính tan a, cos a và sin a
Cho 0°< α<β< 90°. Chứng minh:
a) sin α < tan α
b) cos α < cotan α
c) sin α < sin β
d) cos α > cos β
e) tan α < tan β
f) cotan α > cotan β
Bài 2: Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a, Biết AE = 3,6 cm ; BE = 6,4 cm. Tính AH, EH và góc B ( Số đo góc làm tròn đến độ)
b, Kẻ HF vuông góc với AC tại F. Chứng minh AB . AE = AC . AF
c , Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
C1, Chứng minh tam giác AEF đồng dạng với tam giác ACB
C2, Chứng minh:
1. a) CMR : A =\(\frac{1-2\sin\alpha.\cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b) Tính A khi \(\tan\alpha\) =\(\frac{1}{3}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 25 cm, HC = 64 cm. Tính góc B và góc C ?
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
cho tam giác ABC vg ở A bt tan B = 4/5 tính số đo góc C cos B
1) Tính (không dùng máy tính xách tay)
a) Sin 28 - Cos 62 + Cotg 45
b)Tan 38 . Tan 52 . Tan 60
c) Sin2 23 + Sin2 67 - Sin 45
d)\([(sinB+sinC)^2-1]\) . (tanB+tanC) ( Với góc B+ góc C= 90)
(Cho biết : Cotg 45=1 ; sin 45=\(\frac{\sqrt{2}}{2}\) ; Tan60= \(\sqrt{3}\) )
2) Cho tam giác ABC vuông tại A , AH là đường cao, kẻ HD vuông góc với AB tại D
Chứng minh : a) AB3 = BD . BC2
b) \(\frac{BD}{BC}\) = Cos3 B
3) Cho tam giác nhọn ABC (BC= a ; AC=b) .Chứng minh rằng :
a) SABC= \(\frac{1}{2}\) bc.SinA
b) \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
rút gọn biểu thức
a) \(\left(Sin\alpha+Cos\alpha\right)^2+\left(Sin\alpha-Cos\alpha\right)^2\)
b) \(Sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)\)
c) \(cot^2\alpha-Cos^2\alpha\times Cot^2\alpha\)
d) \(tan^2\alpha-Sin^2\alpha\times tan^2\alpha\)
ai giúp e mấy câu này với ạ !!!