Thay \(y=1\) vào (1) ta được:
\(x=1+3\)
\(\Rightarrow x=4.\)
Vậy \(\left(x;y\right)=\left(4;1\right).\)
Chúc bạn học tốt!
Thay \(y=1\) vào (1) ta được:
\(x=1+3\)
\(\Rightarrow x=4.\)
Vậy \(\left(x;y\right)=\left(4;1\right).\)
Chúc bạn học tốt!
Cho \(\frac{3z-4y}{5}=\frac{5y-3x}{4}=\frac{4x-5z}{3}và\)\(x^2-z^2=36\) . Hãy tìm x,y,z
cho \(\dfrac{4^x}{2^{x+y}}=8\) và \(\dfrac{9^{x+y}}{3^{5y}}=243\) (x,y ϵ Z). tính x.y
1. Cho \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\) và x + y + z = 48. Tìm x;y;z
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\). Chứng minh rằng \(\frac{5x-2y}{2018}=\frac{6y-5z}{2019}=\frac{4z-12y}{2020}\)
tìm x,y,z
a) 4x=5y và 3x-2y=35
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x+y+z= -90
c) x:y:z=3:5:(-2) và 5x-y+3z=124
d) \(\frac{x-4}{3}=\frac{y-6}{3}=\frac{z-8}{4}\)và x+y+z=27
e) \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và 4x-3y+2z=36 Giúp mk vs mk đang cần gấp, trc 20h tối nay nhé , mk sẽ tik thật nhiều
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
Cho \(\frac{3z-4y}{5}\)=\(\frac{5y-3x}{4}\)=\(\frac{4x-5z}{3}\), x2-z2=36. Hãy tìm x,y,z
1/ tìm x, y, z biết
a/ 9x = 12y = 8z và x + y + z = 46
b/ 6x = 4y = -2z và x - y - z = 27
c/ \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(^{x^2+y^2-z^2=-12}\)
d/ \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\) và x . y . z = 192
e/ 6x - 2y = 3y - 4x và x + y = -99
g/ 2x = 5y = 3z - 2x và x + y + z = 62
hlep me , mình tick nha
a) cho \(\frac{x}{3}=\frac{y}{6}\). Tìm x;y
i) x + y=90 ii) 4x - y = 42
iii) xy=162 iv)2x2 -y2= -8
tìm x, y, z biết
e) 2x=3y; 7z = 5y và 3x-7y+5z=30
f)\(\frac{x}{4}=\frac{y}{5}\)và xy=80
g)\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}\)và 3x+5y-7z=32
h)\(\frac{x}{4}=\frac{y}{3}\)và x2-y2=63