Câu 20: A
Câu 16: B
Câu 19: B
Câu 18: A
Câu 4: B
Câu 11; B
Câu 20: A
Câu 16: B
Câu 19: B
Câu 18: A
Câu 4: B
Câu 11; B
*1 câu trả lời hay sẽ được tặng 1-2GP/câu trả lời, 3 CTV tổ chức và giáo viên sẽ đánh giá từng câu trả lời.
[Toán.C986-990 _ 9.5.2021]
Các bạn hãy trình bày ngắn gọn lời giải của câu 12-17 nhé! Nhớ mỗi câu trả lời chỉ trả lời cho 1 câu hỏi, để chúng mình đánh giá từng câu trả lời một nha!
Fanpage: Cuộc thi Trí tuệ VICE | Facebook
trong 1 cuộc thi '' Đấu trường toán học '', mỗi thí sinh dự thi phải trả lời 20 câu hỏi. Mỗi câu trả lời đúng được 10 điểm, mỗi câu trả lời sai bị rừ 4 điểm. Bạn Nam dự cuộc thi và được tổng cộng 172 điểm .Em hãy tính số câu trả lời đúng của bạn Nam.
(học sinh giải thích vì sao chọn đáp án đó)
câu 15 : Cho tam giác ABC có AB = 3cm, AC = 4cm , BC = 5cm. Bán kính đường tròn ngoại tiếp tam giác ABC là:
A. 5 cm
B. 2,5 cm
C. 10 cm
D. 3cm
E biết đáp án rồi nma vẫn hơi mơ hồ nên mn cho em lời giải chi tiết xíu zới ạ :3
Giúp e câu 14 và 15 có lời giải chi tiết với ạ
Cho pt: 4x2 + (m2+2m-15)x + (m+1)2-20=0
Tìm tất cả các giá trị của m để pt có 2 ngiệm x1, x2 thoả mãn: x12+x22+2019=0
Giúp mình trả lời câu này ạ Câu 4 : cho tam giác ABC , các đường cao AH , BK cắt nhau tại E . Chứng minh rằng : A) các điểm C , H , E , K cùng thuộc 1 đường tròn B) ∠HKB = ∠HAB (hai góc bằng nhau)
Câu 1:
Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x ≥ 0, x ≠ 9.
a) Tính giá trị của B khi x = 16;
b) Rút gọn biểu thức M = A - B;
c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)
Câu 2:
a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ 1 làm một mình trong 2 giờ, tổ 2 làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Tính thời gian mỗi tổ làm một mình xong toàn bộ công việc.
Câu 3:
1. Cho phương trình \(x-\left(m+3\right)\sqrt{x}+m+2=0\left(1\right)\)
a) Giải phương trình (1) khi m = - 4
b) Tìm m để phương trình (1) có hai nghiệm phân biệt.
2. Cho đường thẳng (d): y = (m - 1) + 4 (m ≠ 1). Đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2.
Câu 4:
Cho tam giác đều ABC nội tiếp đường tròn (O; R). Điểm M trên cung nhỏ AC. Hạ BK ⊥ AM tại K. Đường thẳng BK cắt tia CM tại E. Nối BE cắt đường tròn (O: R) tại N (N ≠ B).
a) Chứng minh tam giác MBE cân tại M;
b) Chứng minh EN.EB = EM.EC;
c) Tìm vị trí của M để tam giác MBE có chu vi lớn nhất.
Câu 5:
Giải hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Chúc các em ôn thi tốt!
Câu 1.
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)
1) Tính giá trị của biểu thức N khi x = 16,
2) Rút gọn biểu thức M.
3) Tìm tất cả các số tự nhiên x để M < N.
Câu 2.
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.
Câu 3.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)
2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.
a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.
b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.
Câu 4.
Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.
1) Chứng minh tứ giác AMBH nội tiếp.
2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.
3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.
Câu 5.
Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)