Pt hoành độ giao điểm: \(x^2+mx-1=0\) (1)
\(ac=-1< 0\) nên (1) luôn có 2 nghiệm thỏa \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(y_1x_2+y_2x_1-x_1x_2=3\)
\(\Leftrightarrow x_1^2x_2+x_1x_2^2-x_1x_2=3\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow\left(-1\right).\left(-m\right)+1=3\Leftrightarrow m+1=3\Rightarrow m=2\)