Cho đường tròn tâm O đường kính AB, M là điểm chính giữa cung AB, K là 1 điểm bất kì trên cung nhỏ BM. Gọi H là chân đường vuông góc của M xuống AK
a) CM: AOHM nội tiếp
b) tam giác MHK là tam giác gì? Vì sao ?
c) CM: OH là phân giác góc MOK
d) Gọi P là hình chiếu của K lên AB. Xác định vị trí điểm K để chu vi tam giác OPK lớn nhất
Lời giải:
a)
Vì $M$ là điểm chính giữa cung $AB$ nên $MA=MB$
Do đó tam giác $MAB$ cân tại $M$, suy ra đường trung tuyến $MO$ đồng thời là đường cao, hay \(MO\perp AB\Leftrightarrow \widehat{MOA}=90^0\)
Tứ giác $MHOA$ có hai góc cùng nhìn cạnh $OA$ là \(\widehat{MOA}=\widehat{MHA}=90^0\) nên $MHOA$ là tứ giác nội tiếp.
b)
Ta có:
\(\widehat{MKH}=\widehat{MKA}=\frac{1}{2}\widehat{MOA}\) (góc nội tiếp bằng một nửa góc ở tâm cùng chắn một cung MA)
\(\Rightarrow \widehat{MKH}=\frac{1}{2}.90^0=45^0\)
Tam giác $MKH$ vuông tại $H$ có góc $K$ bằng $45$ độ nên là tam giác vuông cân.
c)
Vì $AMHO$ nội tiếp (theo phần a) nên \(\widehat{MOH}=\widehat{MAH}\)
Mà \(\widehat{MAH}=\widehat{MAK}=\frac{1}{2}\widehat{MOK}\) (góc nội tiếp có số đo bằng một nửa góc ở tâm cùng chắn một cung MK)
\(\Rightarrow \widehat{MOH}=\frac{1}{2}\widehat{MOK}\) hay \(2\widehat{MOH}=\widehat{MOK}\)
\(\Rightarrow \widehat{KOH}=\widehat{MOK}-\widehat{MOH}=\widehat{MOH}\)
Do đó $OH$ là phân giác \(\widehat{MOK}\)
d)
Chu vi tam giác \(OPK: C=OP+PK+OK=R+OP+PK\)
Áp dụng BĐT Cauchy:
\(OP^2+PK^2\geq 2OP.PK\)
\(\Rightarrow 2(OP^2+PK^2)\geq (OP+PK)^2\)
\(2OK^2\geq (OP+PK)^2\Leftrightarrow OP+PK\leq \sqrt{2OK^2}=\sqrt{2}R\)
Do đó:
\(C=R+OP+PK\leq R+\sqrt{2}R=R(\sqrt{2}+1)\)
Vậy \(C_{\max}=R(\sqrt{2}+1)\). Giá trị lớn nhất đạt được khi \(OP=KP\Leftrightarrow \triangle OKP\) vuông cân \(\Leftrightarrow \widehat{KOP}=45^0\Leftrightarrow OK\) là phân giác \(\widehat{MOB}\Leftrightarrow K\) là điểm chính giữa cung MB.