Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
helllpppppppppppp mmmmmmmmmmmmmmmiiiiiiiiiiiiii
Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
2. Cho nửa đường tròn(O,R) đường kính AB . Từ một điểm M trên nửa đường tròn , vẽ tiếp tuyến xy .Kẻ AD và BC cùng vuông góc với xy (với D và C thuộc xy)
a, chứng minh rằng MC=MD và AD+BC=2R
b, chứng minh đường tròn đường kính CD tiếp xúc với AB
c, tìm vị trí điểm M trên nửa đường tròn (O) sao cho MA.MB đạt giá trị lớn nhất
Cho đường tròn (O;5cm), điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Biết \(\widehat{AMB}=60^o\), tia AO cắt đường tròn tại điểm C.
a) Chứng minh: ΔAMB đều
b) Tính chu vi ΔAMB
c) Tứ giác BMOC là hình gì? Vì sao?