Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
Cho nửa đường tròn tâm O đường kính BC=2R, A là một điểm bất kìa trên nửa đường tròn khác B và C. Kẻ AH vuống góc với BC, gọi E và F là chân đường vuông góc hạ từ H xuống AB và AC.
a) Cm AE.AB=AF.AC và EF^3=BE.CF.BC
b) Gọi I là điểm đối xứng của H qua AB. Cm IA là tiếp tuyến của nửa đường tròn.
c) Tìm vị trí của A để diện tích tam giác AHB lớn nhất.
Dạ em chỉ cần câu c thôi ạ, em cảm ơn ạ.
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
cho nửa đường tròn tâm O đường kính BC.Điểm A thuộc nửa đường tròn tâm O khác B và C.Kẻ AH vuông góc BC (H \(\in\)BC). Trên nửa mặt phẳng bờ BC chứa A vẽ nửa đường tròn tâm I đường kính BH và nửa đường tròn tâm K đường kính CH , chúng lần lượt cắt AB , AC ở D và E.
a,Chứng minh: tứ giác BCED nội tiếp
b,Gọi M,N lần lượt là các điểm đối xứng H qua AB và AC.Chứng minh MN là tiếp tuyến của nửa đường tròn tâm O
c,Biết BC=50 cm , DE=20 cm .Tính diện tích hình được giới hạn bởi 3 nửa đường tròn tâm O,I,K