cho đường tròn (O;R), đường kính AB. Kẻ tiếp tuyến Ax, lấy điểm C trên Ax (AC>R). Từ C kẻ tiếp tuyến tại CD với (O) (D là tiếp điểm). a) Chứng minh bốn điểm A, C, D, O cùng thuộc một đường tròn.
b) Chứng minh OC//BD.
c) Đường thẳng vuông góc với AB tại O cắt tia BD tại M. Chứng minh OMCD là hình bình hành.
d) Gọi K là giao điểm của CD và OD; I là giao điểm của AM và OC. Chứng minh E, K, I thẳng hàng.
a: Xét tứ giác CAOD có
\(\widehat{CAO}+\widehat{CDO}=180^0\)
=>CAOD là tứ giác nội tiếp đường tròn đường kính CO
=>C,A,O,D cùng thuộc đường tròn đường kính CO
b: Xét (O) có
CA,CD là tiếp tuyến
=>CA=CD
mà OA=OD
nên OC là trung trực của AD
=>OC\(\perp\)AD(1)
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)DB(2)
Từ (1) và (2) suy ra OC//DB
c: Sửa đề: CMBO
Xét ΔCAO vuông tại A và ΔMOB vuông tại O có
AO=BO
\(\widehat{COA}=\widehat{MBO}\)(CO//BM)
Do đó: ΔCAO=ΔMOB
=>CO=MB
Xét tứ giác CMBO có
CO//BM
CO=BM
Do đó: CMBO là hình bình hành