Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Cho ( O,R ) dây CD kẻ OK vuông góc với CD cắt tiếp tuyến tại C của đường tròn tại điểm M.
a, Vẽ hình chính xác
b, Chứng minh MD là tiếp tuyến
c, Biết R=10cm, CD=16cm: Tính OM
Cho đường tròn tâm O , 2 dây AB và CD vuông với nhau ở M . Biết AB=18cm ,CD=14cm ,MA=3cm ,MC=4cm . a) tính khoảng cách từ O đến mỗi dây b) tính bán kính đường tròn tâm O CHÚ Ý NHỎ: CHỈ CẦN LÀM CÂU B THÔI Ạ
Cho đường tròn (O;5cm) có đường kính AB, E thuộc đoạn thẳng AO (E khác A và O). Gọi H là trung điểm của AE, kẻ dây CD vuông góc với AE tại H.
a) Tính OH, CD biết AH=1cm
b) Chứng minh tứ giác ACED là hình thoi.
c) DE và BC cắt nhau tại I. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Cho đường tròn (O) bán kính 5cm, dây AB = 8cm. Đường kính CD cắt
dây AB tại I tạo thành góc CIB bằng \(45^o\) . Kẻ OK vuông góc với AB tại K.
a) Tính độ dài OK.
b) Tính các độ dài IA, IB.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C năm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O)
Cho (o), đuqòng kính AB. Lấy điểm M nằm giữa O và A, vẽ dây CD vuông góc với AB tại M. Gọi I là một điểm thuộc bán kính OB ( I khác O, I khác B)
a, c/m tam giác ICD là tam giác cân
b, Gọi H,H theo thứ tự là chân đường vuông góc kẻ từ O đến IC,ID. c/m 4 điểm O,H,I,K cùng thuộc một 1 đường tròn và OI lớn hơn hoặc bằng OH
Cho đường tròn tâm O, đường kính AB; dây CD cắt AB tại M. Biết MC = 4 cm, MD = 12 cm và . Hãy tính:
a, Khoảng cách từ O đến CD
b, Bán kính của (O)
Cho đường tròn tâm O, điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MB và MC với đường tròn ( B,C là 2 tiếp điểm). OM cắt BC tại I a) Chứng minh M,B,O,C cùng thuộc một đường tròn b) Kẻ đường kính BD của O. Cm MO vuông góc với BC và MO // CD c) Nối MD cắt (O) tại H. Cm MH.MD=MI.MO và góc MIH = góc OHD