a: góc AEB<góc ACB
b: góc AOB=90 độ
c: góc xAB=1/2*sđ cung AB=45 độ
a: góc AEB<góc ACB
b: góc AOB=90 độ
c: góc xAB=1/2*sđ cung AB=45 độ
Cho đường tròn (O;R) và dây cung BC=R . Hai tiếp tuyến của đường tròn (O) tại B,C cắt nhau ở A . Tính góc ABC và góc BAC
Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại A. Tính góc ABC và góc BAC
Hai tiếp tuyến tại a và b của đường tròn cắt nhau tại S biết góc asb = 50° thì số đo của cung nhỏ AB bằng:a.130° b.310° c.50° d.230°
Hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Chứng minh rằng khi cát tuyến quay xung quanh điểm A thì \(\widehat{CBD}\) có số đo không đổi
b) Từ C và D vẽ hai tiếp tuyến với đường tròn. Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A
Cho điểm P nằm ngoài [O] ,vẽ tiếp tuyến PA và cát tuyến PBC của đường tròn .Tia phân giác của góc BAC cắt dây BC tại D .Chứng minh PA=PD
Cho nửa đường tròn (O,R) đường kính BC. Vẽ hai tiếp tuyến Bx và Cy (B,C là hai tiếp tuyến)Gọi A là điểm thuộc đường tròn sao cho cung AB nhỏ hơn cung AC, tiếp tuyến tại điểm A cắt Bx,Cy lần lượt tại D và E.
a)Cm:BD+CE=DE
b)Cm:góc DOE =90 độ và BD.CE=R mũ 2
c)CD cắt BE tại I.Vẽ AH vuông góc BC(H thuộc BC).Cm ba điểm A,I,H thẳng hàng
Cho nửa đường tròn tâm O đường kính AB = 2R ( R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và góc COD = 120. gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là Fa) Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
b) Tính góc IOD
c) CM ID là tiếp tuyến của đường tròn tâm O
Cho nửa đường tròn tâm O đường kính AB = 2R ( R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và góc COD = 120. gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là Fa) Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
b) Tính góc IOD
c) Chứng minh ID là tiếp tuyến của đường tròn tâm O