Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại A. Tính góc ABC và góc BAC
Cho đường tròn (O;R) và dây cung BC=R . Hai tiếp tuyến của đường tròn (O) tại B,C cắt nhau ở A . Tính góc ABC và góc BAC
Cho nửa đường tròn (O,R) đường kính BC. Vẽ hai tiếp tuyến Bx và Cy (B,C là hai tiếp tuyến)Gọi A là điểm thuộc đường tròn sao cho cung AB nhỏ hơn cung AC, tiếp tuyến tại điểm A cắt Bx,Cy lần lượt tại D và E.
a)Cm:BD+CE=DE
b)Cm:góc DOE =90 độ và BD.CE=R mũ 2
c)CD cắt BE tại I.Vẽ AH vuông góc BC(H thuộc BC).Cm ba điểm A,I,H thẳng hàng
Hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Chứng minh rằng khi cát tuyến quay xung quanh điểm A thì \(\widehat{CBD}\) có số đo không đổi
b) Từ C và D vẽ hai tiếp tuyến với đường tròn. Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của đường tròn (O') cắt đường tròn (O) tại điểm thứ hai P. Tia PB cắt đường tròn (O') tại Q. Chứng minh đường thẳng AQ song song với tiếp tuyến tại P của đường tròn (O).
Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau ở A. Tính \(\widehat{ABC};\widehat{BAC}.\)