Cho nửa đường tròn tâm O đường kính AB = 2R ( R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và góc COD = 120. gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là Fa) Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
b) Tính góc IOD
c) Chứng minh ID là tiếp tuyến của đường tròn tâm O
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
⇔BC⊥AC tại C
⇔BC⊥AF tại C
⇔\(\widehat{BCF}=90^0\)
⇔\(\widehat{ECF}=90^0\)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
⇔AD⊥BD tại D
⇔AD⊥BF tại D
⇔\(\widehat{ADF}=90^0\)
⇔\(\widehat{EDF}=90^0\)
Xét tứ giác CEDF có
\(\widehat{FCE}\) và \(\widehat{FDE}\) là hai góc đối
\(\widehat{FCE}+\widehat{FDE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CEDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔C,E,D,F cùng nằm trên một đường tròn(đpcm)
Chứng minh rằng ta luôn có M T 2 = M A . M B