Gọi M, N lần lượt là trung điểm của AB, CD.
Ta có: \(P=AB+CD=2AM+2CN=2\sqrt{R^2-OM^2}+2\sqrt{R^2-ON^2}\).
Ta dễ dàng chứng minh được \(OM^2+ON^2=OI^2\).
Do đó: \(P=2\left(\sqrt{R^2-OM^2}+\sqrt{R^2-ON^2}\right)\le2\sqrt{2\left(R^2-OM^2+R^2-ON^2\right)}=2\sqrt{2\left(2R^2-OI^2\right)}\).
Đẳng thức xảy ra khi và chỉ khi \(OM=ON\), tức AB tạo với OI một góc