Xét (O) có
ΔMAB nội tiếp
AB là đường kính
DO đo: ΔMAB vuông tại M
Xét (O) có
ΔMAB nội tiếp
AB là đường kính
DO đo: ΔMAB vuông tại M
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn tâm O đường kính AB, điểm M thuộc đương tròn tâm O. Hãy vẽ điểm N đối xứng điểm A qua M, tia BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM
Cho đường tròn (O), đường kính AB,điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM
a) chứng minh NE vuông góc với AB
b) gọi F là điểm đối xứng với E qua M. Chứng minh rằng FA là tiếp tuyến của đường tròn (O)
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp