Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.Cho đường tròn đường kính BC cố định. Trên tia đối của BC lấy điểm A (khác B). Kẻ tiếp tuyến AM với đường tròn tâm (O), M là tiếp điểm. Qua A kẻ đường thẳng d vuông góc với AC, tia CM cắt d tại D.
a) Chứng minh tứ ADMB là tứ giác nội tiếp
b) Kẻ tia Mx sao cho MB là phân giác của góc AMx. Chứng minh AB.AC=AH.AO
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
Giúp với, trừ câu a
Cho (O) và một dây cung AC cố định. Trên cung lớn AC lấy điểm B bất kì. Phân giác của góc ABC cắt cạnh AC tại M và cắt (O) tại K. Kẻ đường cao BH của tam giác ABC
a)Chứng minh OK⊥AC
b)Chứng minh BM là tia phân giác của góc OBH
c)Chứng minh KC2=KM.KB
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
Cho tam giác MNQ vuông tại M, kẻ đường cao MH và phân giác NE (H∈NQ; E∈MQ). Kẻ MD vuông góc với NE (D∈NE).
a) chứng minh tứ giác MDHN nội tiếp trong một đường tròn. Xác định tâm O của đường tròn đó.
b)Chứng minh MD là tia phân giác của góc HMQ và OD//HB
c)Biết góc ABC = 60 và AB = a (với a > 0). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn (O)
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm