Cho tam giác MNQ vuông tại M, kẻ đường cao MH và phân giác NE (H∈NQ; E∈MQ). Kẻ MD vuông góc với NE (D∈NE).
a) chứng minh tứ giác MDHN nội tiếp trong một đường tròn. Xác định tâm O của đường tròn đó.
b)Chứng minh MD là tia phân giác của góc HMQ và OD//HB
c)Biết góc ABC = 60 và AB = a (với a > 0). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn (O)
a: góc MDN=góc MHN=90 độ
=>MDHN nội tiếp
b: góc EMD=góc MNE
góc HMD=góc HND
mà góc MNE=góc HND
nên góc EMD=góc HMD
=>MD là phân giác của góc HME