cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
a) Ta có: \(\widehat{CHA}=90^0\)(CH⊥AM)
nên H nằm trên đường tròn đường kính CA(Định lí)(1)
Ta có: \(\widehat{COA}=90^0\)(CO⊥AB)
nên O nằm trên đường tròn đường tròn CA(Định lí)(2)
Từ (1) và (2) ta suy ra: H và O nằm trên đường tròn đường kính CA
hay CHOA là tứ giác nội tiếp(đpcm)
a,Xét tứ giác CHOA:
`\hat{CHA}=\hat{COA}=90^o`
`=>` CHOA là tứ giác nội tiếp